HASHEMITE UNIVERSITY
Department of Mechanical Engineering
First Exam
Dynamics
July ${ }^{\text {rd }} 2007$
Name:
Problem 1:
Starting from $x=0$ with no initial velocity, a particle is given an acceleration $a=0.8\left(v^{2}+49\right)^{1 / 2}$, where a and v are expressed in $\mathrm{ft} / \mathrm{s}^{2}$ and ft / s, respectively. Determine
a) The position of the particle when $v=24 \mathrm{ft} / \mathrm{s}$
b) The speed of the particle when $x=40 \mathrm{ft}$

Problem 2:

In a boat race, boat A is leading boat B by 38 m and both boats are traveling at a constant speed of $168 \mathrm{~km} / \mathrm{h}$. At $t=0$, the boats accelerate at constant rates. Knowing that when boat B passes A, $t=8 \mathrm{~s}$ and $\mathrm{v}_{\mathrm{A}}=228 \mathrm{~km} / \mathrm{h}$, determine
a) The acceleration of A
b) The acceleration of B

Problem 3:

A 40 kg package is at rest on an incline when a force P is applied to it. Determine the magnitude of P if 4 s is required for the package to travel 10 m up the incline. The static and kinetic coefficients of friction between the package and the incline are 0.30 and 0.25 , respectively.

